

Printed Pages: 4 CS - 054

(Following Paper ID and F	Roll No. to	be	filled	in	you	r A	nsw	er	Boo	ok)
PAPER ID: 1051	Roll No.									

B. Tech.

(SEM. VIII) EXAMINATION, 2006-07 DATA COMPRESSION

Time: 3 Hours] [Total Marks: 100]

Note: Attempt **all** questions. All questions carry **equal** marks.

- 1 Attempt any four parts of the following: $5\times4=20$
 - (a) What do you mean by lossless compression? Compare lossless compression with lossy compression.
 - (b) Explain Modeling and coding with the help of suitable examples.
 - (c) Suppose X is a random variable that takes on values from M.letter alphabet show that

$$0 \le H(x) \le \log_2 M$$

(d) What do you understand by information and entropy? Find the first order entropy over an alphabet $A = \{a_1, a_2, a_3, a_4\}$ where

$$p(a_1) = p(a_2) = p(a_3) = p(a_4) = 1/4$$

- (e) What do you understand by Prefix code?
- (f) The joint probabilities of the transmitted and received messenges of a communication system is given as

V-1051] 1 [Contd...

	\mathbf{Y}_1	\mathbf{Y}_2	$\mathbf{Y_3}$	$\mathbf{Y_4}$
$\overline{x_1}$	1/4	0	1/10	0
$\mathbf{p}(\mathbf{x},\mathbf{y}) = \mathbf{x}_2$	0	1/4	0	1/20
x ₃	0	0	1/10	1/20
$\mathbf{x_4}$	0	1/20	0	1/10
x ₅	0	0	0	1/20

Calculate H(x) and H(y)

- Attempt any four parts of the following: $5\times4=20$
 - (a) What are two observations on which Hyffman procedure is based regarding optimum prefix code?
 - (b) What are the various applications of Huffman Coding?
 - (c) What is Redundency of code? How can we define and calculate it?
 - (d) Consider source alphabet of **A,B,C...G,H** having probabilities **P** (x_i) given as **P** $(x_i) = 1/2$, 1/4, 1/16, 1/16, 1/32, 1/32, 1/32, 1/32

Design the Huffman code. Also calculate average length of codewords and code efficiency.

(e) For an Alphabet $A = \{a_1 \ a_2 \ a_3\}$ with probabilities $P(a_1) = 0.7$, $P(a_2) = 0.2$, $P(a_3) = 0.1$

Design a 3-bit Tunstall Code.

- (f) Write short notes on the following:
 - (i) Golomb Code
 - (ii) Non binary Huffman Code.

V-1051] 2 [Contd...

- 3 Attempt any four parts of the following: $5\times4=20$
 - (a) What do you mean by Binary Code? Compare Binary code with Huffman Code.
 - (b) Where we use the dictionary techniques of Encoding? Also explain various types of dictionary techniques.
 - (c) Explain the Run-Length Coding with the help of suitable example.
 - (d) A sequence is encoded using **LZW** algorithm and the initial dictionary shown in table

Index	Entr		
1	а		
2	В		
3	r		
4	t		

The output of **LZW** encoder is the following sequence

3,1,4,6,8,4,2,1,2,5,10,6,11,13,6

Decode this sequence.

- (e) Find the real valued tag for the sequence $a_1a_1a_3a_2a_3a_1$ over letter $\{a_1\ a_2\ a_3\}$ with probabilities $\{0.2,\ 0.3,\ 0.5\}$
- (f) Write short notes on the following:
 - (i) Dynamic Markov Compression
 - (ii) Graphic Interchange Format.
- 4 Attempt any two parts of the following: $10\times2=20$
 - (a) What do you understand by Adaptive quantization? Explain the various approaches to adapting the quantizer parameters.

V-1051] 3 [Contd...

- (b) What is conditional entropy and Mutual Information and Average Mutual Information? For two Random variables **X** and **Y** show that
 - (a) $\mathbf{H}(\mathbf{x/y}) \leq \mathbf{H}(\mathbf{x})$
 - (b) I(x;y) = I(y;x)
- (c) What is Rate distortion theory? Drive the Rate distortion function for the
 - (i) Binary Source
 - (ii) Gaussian Source.
- 5 Attempt any **two** parts of the following: $10 \times 2 = 20$
 - (a) What do you understand by vector quantization? Also explain the procedure of vector quantization.
 - (b) What is tree-structured vector quantization? Explain the design process of tree-structured vector quantizer. What is prunning? How it helps to improve the rate distortion performance?
 - (c) Explain the following quantization techniques in detail :
 - (a) Structured vector quantization
 - (b) Pyramid vector quantization.

V-1051] 4 [6825]