Register Number:
(b) Prove that

$$
\frac{1+\tan h x}{1-\tan h x}=\cosh x+\sinh 2 x
$$

8. (a) Prove that

$$
u=\log _{e}\left(\frac{\pi}{4}+\frac{\theta}{2}\right) \text { iff } \cos h u=\sec \theta
$$

(b) If

$$
\mathrm{i}^{\mathrm{x}+\mathrm{iy}}=\mathrm{A}+\mathrm{iB}
$$

show that

$$
A^{2}+B^{2}=e^{-(4 n+1) \pi y}
$$

9. (a) Find the equation of the plane containing the point $(-1,7,2)$ and the line

$$
\frac{x+3}{2}=\frac{y+2}{3}=\frac{z-2}{-2}
$$

(b) Find the equation of the sphere passing through the points $(0,0,0),(1,0,0)$, $(0,1,0)$ and $(0,0,1)$
10. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \\
& \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5} .
\end{aligned}
$$

Name of the Candidate:
1216

B.Sc. DEGREE EXAMINATION, 2010

(APPLIED CHEMISTRY/ELECTRONIC SCIENCE/ PHYSICS)
(FIRST YEAR)

(PART - III - B - ANCILLARY)

(PAPER - I)

550. MATHEMATICS - I

(Including Lateral Entry)

May]
[Time : 3 Hours
Maximum : 75 Marks
Answer any FIVE questions. All questions carry equal marks.

$$
(5 \times 15=75)
$$

1. (a) Sum the series to infinity

$$
\frac{1 \cdot 2}{3!}+\frac{2 \cdot 3}{4!}+\frac{3 \cdot 4}{5!}+\ldots .
$$

(b) Find

$$
\sum_{n=1}^{\infty} \frac{(\mathrm{n}-1)}{(\mathrm{n}+2) \mathrm{n}!} \mathrm{x}^{\mathrm{n}}
$$

2. (a) Prove that a subgroup of a cyclic group is cyclic.
(b) Let H be a subgroup of index 2 in a group G. Show that H is a normal subgroup of G.
(c) Let G be a group such that $\mathrm{a}^{2}=\mathrm{e}$ for all $a \in G$. Then prove that G is abelian.
3. (a) If

$$
y=e^{a \sin ^{-1}(x)}
$$

prove that

$$
\begin{aligned}
\left(1-x^{2}\right) y_{n+2}-(2 n & +1) x y_{n+1} \\
& -\left(n^{2}+a^{2}\right) y_{n}=0
\end{aligned}
$$

(b) Find the radius of curvature of the curve $r^{2}=a^{2} \sin 2 \theta$
4. (a) Find the rank of the matrix

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 \\
0 & 3 & 4 & 2
\end{array}\right)
$$

(b) Show that the non-singular matrix

$$
\begin{aligned}
& \qquad \mathrm{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right) \\
& \text { satisfies the equation } \\
& \mathrm{A}^{2}-2 \mathrm{~A}-5 \mathrm{I}=0
\end{aligned}
$$

5. Find the eigen values and the eigen vectors of the matrix

$$
\left(\begin{array}{ccc}
8 & 2 & -2 \\
3 & 3 & -1 \\
24 & 8 & -6
\end{array}\right)
$$

6. Show that the equations

$$
\begin{aligned}
x+y+z & =6 \\
x+2 y+3 z & =14 \\
x+4 y+7 z & =30
\end{aligned}
$$

are consistent and solve them.
7. (a) Expand $\sin ^{7} \theta$ in a series of sines of multiples of θ.

Turn over

