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Answer  any  FIVE  questions.

All  questions  carry  equal  marks.

(5 × 20 = 100)

(b) If

find  A–1.

6. (a) Find  the  rank  of  the  matrix

(b) If

prove  that

f(x + y)  =  f(x) · f(y).
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[ ]A  =

,

[
3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

10 7 8 9 10

7 8 9 1 2

]
.

f(x)  =

cos x –sin x 0

sin x cos x 0

0 0 1
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1. (a) Evaluate

where

f  =  (sin y) i  +  x(1 + cos y) j

and c  is  the  circle

x
2
  +  y

2
  =  1

in  the  xy - plane.

(b) Prove  that

(i) ∆( f(r) )  =  [ f ′(r) ] r / r

and (ii) ∆(rn)  =  n rn – 2  r.

2. (a) Show  that  ( r
n 

  r )  is  solenoidal  if  n = –3.

(b) Prove  that

curl  (φ  F)  =  (grad φ)  ×  F  +  φ  (curl  F).

2 3

∫
c

f · dr

––

–

–

–

– –

3. Verify  Stoke’s  theorem  for

f (x
2
  –  y

2
) i  +  2xy j

over  the  box  bounded  by  the  planes

x = 0,  x = a,  y = 0,  y = b,  z = 0,  z = c

if  the  face  z  =  c  is  cut.

4. (a) Prove  that

(b) Using  determinants,  solve  the  equations

x  +  y  +  2z  =  4

2x  – y  +  3z  =  9

 3x  –  y  –  z  =  2.

5. (a) Prove  that  any  Hermitian  matrix  can  be

uniquely  expressed  as  A  +  iB  where  A

is  a  real  symmetric  and  B  is  real  skew

symmetric.

1 ab c (a + b)

1 bc a (b + c)

1 ca b (c + a)

=  0.
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7. (a) Find  the  eigen  value  and  the  corresponding

eigen  vectors  of  the  matrix

(b) Test  for  consistency  the  following  system

of  equations.  If  it  is  consistent,  find  the

solution :

    x  –  4y  –  3z  =  –16

    4x  –  y  +  6z  =  16

2x  +  7y  +  12z  =  48

   5x  –  5y  +  3z  =  0.

8. (a) Show  that

{ (1,  1,  0),  (1,  0,  1),  (0,  1,  1), }

is  a  basis  for  R3  over  R.

(b) If  A  and  B  are  subspaces  of  a  vector

space  V,  prove  that  A + B  and  A ∩ B

are  subspaces  of  V.

5
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6 –2 2

–2 3 –1

2 –1 3
[ ]

.

9. (a) Prove  that  any  two  bases  of  a  finite

dimensional  vector  space  V  have  the  same

number  of  elements.

(b) Prove  that  any  vector  space  of  dimension

n  over  a  field  F  is  isomorphic  to

V
n
(F)  =  Fn.

10. (a) Let  V  be  a  finite  dimensional  vector  space

over  a  field  F.  Let  W  be  a  subspace  of

V.  Then,  prove  that

(i) dim  W  <  dim  V

and (ii) dim  (V/W)  =  dim V  –  dim W.

(b) Let  V  be  a  vector  space  over  F.  Let

S  =  { V
1
,  V

2
,  …,  V

n
 }  ⊂  V

if  and  only  if,  S  is  a  maximal  linearly

independent  set.

( )V

W
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