Register Number :
(b) If

$$
A=\left[\begin{array}{rrr}
-3 & -2 & 2 \\
6 & 5 & -2 \\
-6 & -2 & 5
\end{array}\right]
$$

find A^{-1}.
6. (a) Find the rank of the matrix
$\left[\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 7 & 8 & 9 & 10 \\ 7 & 8 & 9 & 1 & 2\end{array}\right]$.
(b) If

$$
f(x)=\left[\begin{array}{ccc}
\cos x & -\sin x & 0 \\
\sin x & \cos x & 0 \\
0 & 0 & 1
\end{array}\right]
$$

prove that

$$
f(x+y)=f(x) \cdot f(y)
$$

Name of the Candidate :
B.Sc. DEGREE EXAMINATION, 2008 (MATHEMATICS)
(THIRD YEAR)

```
(PART - III - A - MAIN )
    (PAPER - IV )
```

710. VECTOR CALCULUS AND LINEAR ALGEBRA
(Including Lateral Entry)
December]
[Time : 3 Hours
\square Maximum : 100 Marks

Answer any FIVE questions.
All questions carry equal marks.

$$
(5 \times 20=100)
$$

1. (a) Evaluate

$$
\int_{c} \mathrm{f} \cdot \mathrm{dr}
$$

where

$$
\mathrm{f}=(\sin \mathrm{y}) \overline{\mathrm{i}}+\mathrm{x}(1+\cos \mathrm{y}) \overline{\mathrm{j}}
$$

and c is the circle

$$
x^{2}+y^{2}=1
$$

in the $x y$-plane.
(b) Prove that
(i) $\Delta(\mathrm{f}(\mathrm{r}))=\left[\mathrm{f}^{\prime}(\mathrm{r})\right] \overline{\mathrm{r}} / \mathrm{r}$
and (ii) $\Delta\left(\mathrm{r}^{\mathrm{n}}\right)=\mathrm{nr}^{\mathrm{n}-2} \overline{\mathrm{r}}$.
2. (a) Show that $\left(\mathrm{r}^{\mathrm{n}} \overline{\mathrm{r}}\right)$ is solenoidal if $n=-3$.
(b) Prove that
$\operatorname{curl}(\phi \overline{\mathrm{F}})=(\operatorname{grad} \phi) \times \overline{\mathrm{F}}+\phi(\operatorname{curl} \mathrm{F})$.
3. Verify Stoke's theorem for

$$
\bar{f}\left(x^{2}-y^{2}\right) \bar{i}+2 x y \bar{j}
$$

over the box bounded by the planes

$$
x=0, x=a, \quad y=0, \quad y=b, z=0, z=c
$$

if the face $z=c$ is cut.
4. (a) Prove that

$$
\left|\begin{array}{lll}
1 & a b & c(a+b) \\
1 & b c & a(b+c) \\
1 & c a & b(c+a)
\end{array}\right|=0 .
$$

(b) Using determinants, solve the equations

$$
\begin{array}{r}
x+y+2 z=4 \\
2 x-y+3 z=9 \\
3 x-y-z=2
\end{array}
$$

5. (a) Prove that any Hermitian matrix can be uniquely expressed as $A+i B$ where A is a real symmetric and B is real skew symmetric.
6. (a) Prove that any two bases of a finite dimensional vector space V have the same number of elements.
(b) Prove that any vector space of dimension n over a field F is isomorphic to

$$
\mathrm{V}_{\mathrm{n}}(\mathrm{~F})=\mathrm{F}^{\mathrm{n}}
$$

10. (a) Let V be a finite dimensional vector space over a field F . Let W be a subspace of V. Then, prove that
(i) $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$
and (ii) $\operatorname{dim}\left(\frac{\mathrm{V}}{\mathrm{W}}\right)=\operatorname{dim} \mathrm{V}-\operatorname{dim} \mathrm{W}$.
(b) Let V be a vector space over F. Let

$$
\mathrm{S}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\} \subset \mathrm{V}
$$

if and only if, S is a maximal linearly independent set.
7. (a) Find the eigen value and the corresponding eigen vectors of the matrix

$$
\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

(b) Test for consistency the following system of equations. If it is consistent, find the solution :

$$
\begin{aligned}
x-4 y-3 z & =-16 \\
4 x-y+6 z & =16 \\
2 x+7 y+12 z & =48 \\
5 x-5 y+3 z & =0
\end{aligned}
$$

8. (a) Show that
$\{(1,1,0),(1,0,1),(0,1,1)$, is a basis for R^{3} over R .
(b) If A and B are subspaces of a vector space V, prove that $A+B$ and $A \cap B$ are subspaces of V .
