(b) Sum to infinity the series

$$
1+\frac{6}{3!}+\frac{11}{5!}+\frac{16}{7!}+\frac{21}{9!}+\ldots .
$$

Name of the Candidate :

1202

B.Sc. DEGREE EXAMINATION, 2010

 (MATHEMATICS)(FIRST YEAR)
(PART-III-A-MAIN)
(PAPER - I)
530. ANALYSIS - I

May]
[Time: 3 Hours
Maximum : 100 Marks

Answer any FIVE questions. All questions carry equal marks. $(5 \times 20=100)$

1. (a) Prove that $\sqrt{2}$ is irrational.
(b) State and prove Dedekind's theorem on real numbers.
2. (a) Show that any Cauchy sequence of real numbers is convergent.

Turn over
(b) Show that

$$
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots .
$$

is convergent.
3. (a) Find $\frac{d y}{d x}$, if
(i) $y=3 x^{2} e^{3 x} \cos x$
(ii) $y=\frac{x(x+1)}{x-1}$
(b) Differentiate

$$
\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)
$$

with respect to

$$
\sqrt{1-x^{2}}
$$

8. (a) Evaluate

$$
\lim _{x \rightarrow 0} \frac{\log x}{\operatorname{cosec} x}
$$

(b) Evaluate

$$
\lim _{x \rightarrow \pi / 4}(\tan x)^{\tan 2 x}
$$

9. (a) Verify Euler's theorem for

$$
\mathrm{u}=\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+3 \mathrm{xyz}
$$

(b) If

$$
u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)
$$

Show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \sin 2 u
$$

10. (a) Sum to infinity the series

$$
\frac{2}{6}+\frac{2 \cdot 5}{6 \cdot 12}+\frac{2 \cdot 5 \cdot 8}{6 \cdot 12 \cdot 18}+\ldots .
$$

(b) If

$$
y=\left(x+\sqrt{x^{2}-1}\right)^{m}
$$

Prove that

$$
\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-m^{2} y=0
$$

6. (a) State and prove Rolle's theorem.
(b) If x is positive, prove that

$$
1+\mathrm{x}<\mathrm{e}^{\mathrm{x}}<1+\mathrm{xe}^{\mathrm{x}}
$$

7. (a) Find the maxima and minima of the function

$$
x^{3}-18 x^{2}+96 x+4
$$

(b) From a given circular sheet of metal, it is required to cut out a sector so that the remainder can be formed into a conical vessel of maximum capacity. Prove that the angle of the sector removed must be above 66°.
4. (a) Find the equation of the tangent to the curve $y=x^{3}$ at the point

$$
\left(\frac{1}{2}, \frac{1}{8}\right)
$$

(b) Show that the radius of curvature at any point of the cycloid

$$
\begin{aligned}
\mathrm{x} & =\mathrm{a}(\theta+\sin \theta) \\
\text { and } \mathrm{y} & =\mathrm{a}(1-\cos \theta)
\end{aligned}
$$

is $4 \mathrm{a} \cos \frac{\theta}{2}$
5. (a) If

$$
\begin{aligned}
& \mathrm{x}=\cos \mathrm{t}+\mathrm{t} \sin \mathrm{t} \\
& \mathrm{y}=\sin \mathrm{t}-\mathrm{t} \cos \mathrm{t}
\end{aligned}
$$

find $\frac{d^{2} y}{d x^{2}}$.

