(b) Evaluate
$(\sin \mathrm{x})^{\tan \mathrm{x}}$

Name of the Candidate:
1245
10. (a) Sum to infinity the series

$$
1+\frac{9}{8}+\frac{9 \cdot 15}{8 \cdot 16}+\frac{9 \cdot 15 \cdot 21}{8 \cdot 14 \cdot 24}+\ldots
$$

Lim
 $\mathrm{x} \rightarrow \frac{\pi}{2}$

(b) Sum the series

$$
1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+\frac{1+3+3^{2}+3^{3}}{4!}+\ldots
$$

B.Sc. DEGREE EXAMINATION, 2011

 (MATHEMATICS) (FIRST YEAR)(PART-III)
(GROUP - A-MAIN)
(PAPER - I)
530. ANALYSIS - I

May]
[Time : 3 Hours
Maximum : 100 Marks
Answer any FIVE questions.
All questions carry equal marks.

$$
(5 \times 20=100)
$$

1. (a) Prove that any non-empty set of real numbers which is bounded above has a supremum.
(b) Prove that $\sqrt{3}$ is irrational.
2. (a) Prove that any Cauchy sequence of real numbers is convergent.
(b) Discuss the convergence of the series.

$$
\sum \frac{1}{\mathrm{n}^{\mathrm{k}}}
$$

3. (a) Find , if
(i) $y=\sin ^{3}\left(x^{2}\right)$
(ii) $y=\frac{x+4}{x-2}$
(b) Differentiate sec^{-1}
with respect to
4. (a) Find the equation of the tangent to the curve $y=\frac{6 x}{x^{2}-1}$ at the point $(2,4)$
(b) Find the radius of curvature of the curve $\mathrm{y}^{2}=\quad$ at the point $(2,0)$.
5. (a) Find y_{n} if $y=$
(b) If $y=(x+\quad)^{m}$, prove that

$$
\left(1+x^{2}\right) \quad+x \frac{d y}{d x}-m^{2} y=0
$$

6. (a) State and prove Rolle's theorem.
(b) If x is positive, show that

$$
x-\frac{1}{2} x^{2}<\log (1+x)<x
$$

7. (a) Find the maxima and minima of the function $x^{3}+3 x^{2}-24 x+20$.
(b) Prove that the volume of the greatest right circular cone that can be inscribed in a given sphere is $\frac{8}{27}$ of the volume of the sphere.
8. (a) Evaluate :
