B.Sc. DEGREE EXAMINATION, 2010
(COMPUTER SCIENCE)
(FIRST YEAR)
(PART - III)
(PAPER - II)
130 / 140 / 530 / 541. SCIENTIFIC

COMPUTING

[(Common to New and Revised Regulations) B.Sc. Information Technology (New and Revised Regulations B.C.A. - Revised Regulations)]

May]
[Time: 3 Hours
Maximum : 100 Marks
Answer any FIVE questions. All questions carry equal marks.

$$
(5 \times 20=100)
$$

1. (a) Solve the equation

$$
x^{3}+x^{2}-1=0
$$

for the positive root by iteration method.
(b) Find an approximate root of

$$
\mathrm{x} \log _{10} \mathrm{x}=1 \cdot 2
$$

by false position method.

$$
(10+10)
$$

2. (a) Find the real positive root of

$$
3 x-\cos x-1=0
$$

by Newton - Raphson method correct to 6 decimal places.
(b) By Gauss - elimination method, solve the system

$$
\begin{aligned}
& 3.15 x-1.96 y+3.85 z=12.95 \\
& 2.13 x+5.12 y-2.89 z=-8.61 \\
& 5.92 x+3.05 y+2.15 z=6.88 \\
&(10+10
\end{aligned}
$$

3. (a) Evaluate

$$
\int_{0}^{\pi / 2} \sin x d x
$$

by Simpson's $\frac{1}{3}$ rule dividing the range into six equal parts.
8. (a) Classify the equations
(i) $u_{x x}-4 u_{x y}+4 u_{y y}=0$.
(ii) $u_{x x}+u_{y y}=0$.
(b) Solve :

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=8 x^{2} y^{2}
$$

in the square mesh given $u=0$ on the four boundaries dividing the square into 16 sub-squares of length 1 unit.

$$
(5+15)
$$

5. (a) Using Taylor series method, find $\mathrm{y}(1 \cdot 1)$ and $y(1.2)$ correct to four decimal places given.

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=x y^{1 / 3} \text { and } \mathrm{y}(1)=1
$$

(b) Find the value of $y(0 \cdot 1)$ by Picard's method given

$$
\frac{d y}{d x}=\frac{y-x}{y+x} \text { and } y(0)=1
$$

$$
(10+10)
$$

6. Apply the fourth order Runge - Kutta method to find $y(0 \cdot 1)$ and $y(0.2)$ given that

$$
\begin{equation*}
\mathrm{y}^{\prime}=\mathrm{x}+\mathrm{y}, \mathrm{y}(0)=1 \tag{20}
\end{equation*}
$$

7. (a) Solve :

$$
\mathrm{y}_{\mathrm{n}+2}-2 \mathrm{y}_{\mathrm{n}+1}+\mathrm{y}_{\mathrm{n}}=\mathrm{n}^{2} 2^{\mathrm{n}}
$$

(b) Fit a curve of the form

$$
y=a x^{2}+b x+c
$$

for the data given below:

$\mathrm{x}:$	10	20	30	40	50	60
$\mathrm{y}:$	$4 \cdot 5$	$7 \cdot 1$	$10 \cdot 5$	$15 \cdot 5$	$20 \cdot 5$	$27 \cdot 1$

(b) Construct Newton's forward interpolation polynomial for the following data:

$\mathrm{x}:$	4	6	8	10
$\mathrm{y}:$	1	3	8	16

use it to find the value of y for $x=5$.

$$
(10+10)
$$

4. (a) Using Stirling's formula, compute y_{35}, given that

$$
\begin{aligned}
& \mathrm{y}_{10}=600 \\
& \mathrm{y}_{20}=512 \\
& \mathrm{y}_{30}=439 \\
& \mathrm{y}_{40}=346 \\
& \mathrm{y}_{50}=243
\end{aligned}
$$

(b) Find a polynomial of degree four which takes the values:

$\mathrm{x}:$	2	4	6	8	10
$\mathrm{y}:$	0	0	1	0	0

$(10+10)$

