7. (a) Expand $\sin ^{3} \theta, \cos ^{4} \theta$ in terms of sines of multiples of θ.
(b) Express $\sin ^{3} \theta$ in terms of sines of multiples of x.
8. Find the equation of the sphere through the circle

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}+2 x+3 y+5 z & =0 \\
2 x+6 y+5 z-6 & =0
\end{aligned}
$$

and passing through the center of the sphere

$$
x^{2}+y^{2}+z^{2}-2 x-4 y+6 z+1=0
$$

Name of the Candidate:

B.Sc. DEGREE EXAMINATION, 2008

(APPLIED CHEMISTRY/ELECTRONIC SCIENCE/ PHYSICS)
(FIRST YEAR)
(PART - III - B - ANCILLARY)
550. MATHEMATICS - I

December]
[Time : 3 Hours
9. Find the shortest distance between the lines

$$
\begin{aligned}
& \quad 2 x-2 y+3 z-12=0=2 x+2 y+z \\
& \text { and } 2 x-z=0=5 x-2 y+9
\end{aligned}
$$

10 . Verify the lines

$$
\begin{aligned}
\frac{x-2}{7} & =\frac{y-4}{2}=\frac{z-5}{2} \\
\text { and } \frac{x-5}{2} & =\frac{y-8}{3}=\frac{z-7}{2}
\end{aligned}
$$

are coplanar. Find the equation of the plane containing them.

Prove that
$1+\left(\frac{1}{2}+\frac{1}{3}\right) \cdot \frac{1}{4}+\left(\frac{1}{4}+\frac{1}{5}\right) \cdot \frac{1}{4^{2}}$

$$
+\left(\frac{1}{6}+\frac{1}{7}\right) \cdot \frac{1}{4^{3}}+\ldots . .=z \log \sqrt{12}
$$

2. (a) State and prove Lagrange's theorem on finite groups.
(b) If f is a homomorphism of a group G into a group G^{\prime} with Kernal K, prove that

$$
\frac{\mathrm{G}}{\mathrm{~K}} \cong \mathrm{G}^{\prime}
$$

3. (a) If

$$
\mathrm{y}=\sinh ^{-1} \mathrm{x}
$$

prove that

$$
\begin{aligned}
\left(1+x^{2}\right) y_{n+2}+ & (2 n+3) x y_{n+1} \\
& +(n+1)^{2} y_{n}=0
\end{aligned}
$$

(b) Find the maxima and minima of the function $x^{3} y^{2}(6-x-y)$.
4. Show that the systems of equations

$$
\begin{gathered}
x+y+z=6 \\
x+2 y+3 z=14 \\
x+4 y+7 z=30
\end{gathered}
$$

is consist and hence, solve it.
5. Find the eigen value and eigen vectors of the matrix

$$
A=\left(\begin{array}{ccr}
0 & 1 & 1 \\
-4 & 4 & 2 \\
4 & -3 & -1
\end{array}\right)
$$

6. (a) Separate into real and imaginary part of $\sin (x-i y)$.
(b) If

$$
\tan \left(\frac{x}{2}\right)=\tanh \left(\frac{y}{2}\right),
$$

prove that

$$
\sinh y=\tan x
$$

