4

(ii)
$$CH_3 - CH - C - CH = CH_2$$
 CH_3
 $(7 + 8 + 5)$
 (OR)

- 6. (a) Explain Franck Condon principle.
 - (b) Define coupling constant. Explain the factors which affect the coupling constant values.
 - (c) Discuss any two applications of Raman spectroscopy. (5 + 7 + 8)

UNIT - IV

- 7. (a) What is solubility product? Discuss the applications of solubility product.
 - (b) Explain primary and secondary standards.
 - (c) Write a note on precipitation from homogeneous solutions. (10 + 5 + 5)

(OR)

Register Number:

Name of the Candidate:

5 2 4 9

B.Sc. DEGREE EXAMINATION, 2008

(APPLIED CHEMISTRY)

(THIRD YEAR)

(PART - III)

(PAPER - VI)

720. ANALYTICAL CHEMISTRY

(Including Lateral Entry)

December]

[Time : 3 Hours

Maximum: 100 Marks

Answer ONE question from each Unit.

All questions carry equal marks.

UNIT - I

- 1. (a) Distinguish between:
 - (i) Mean and median.
 - (ii) Absolute and relative errors.

Turn over

http://www.howtoexam.com

- (iii) Variance and standard deviation.
- (iv) Indeterminate and determinate errors.
- (v) Accuracy and precision.
- (b) How are weights calibrated?
- (c) Write notes on significant figures.

$$(10 + 5 + 5)$$

(OR)

- (a) Explain Gaussian distribution curve.
 - (b) Explain correlation co-efficient and linear regression. Give the method of least square fit for a given set of data.
 - (c) Describe the types of errors.

$$(5 + 8 + 7)$$

UNIT - II

- 3. (a) What is coulometry? With suitable circuit diagrams, explain the different types of coulometric analysis.
 - (b) Explain the basic principle of fluorimetry and its any two applications.

3

(c) Write a note on half - wave potential.

(8 + 7 + 5)

(OR)

- 4. (a) Discuss the basis of amperometric titrations. Illustrate, taking suitable examples.
 - (b) Explain the instrumentation and any two applications of nephelometry.
 - (c) Describe the basic principle of cyclic (7 + 6 + 7)voltammetry.

UNIT - III

- 5. (a) Describe the various types of electronic transistors.
 - (b) Explain the effect of hydrogen bonding in IR absorption of a compound.
 - (c) Calculate the λ_{max} values for the following compounds:

Turn over

- 8. (a) Write a note on choice of indicators.
 - (b) How are iron and nickel determined colorimetrically?
 - (c) Write notes on:
 - (i) Common ion effect.
 - (ii) Co-precipitation. (5 + 8 + 7)

UNIT - V

- 9. (a) What is chromatography? How is it classified?
 - (b) Explain the principle and instrumentation of GC.
 - (c) Describe the basic principle and applications of TLC. (5+8+7)

(OR)

- 10. (a) Explain the carrier gas and sample injection in GC.
 - (b) Distinguish between column and partition chromatography.
 - (c) Give a brief account of spray reagents and R_f value. (6+8+6)

- 8. (a) Write a note on choice of indicators.
 - (b) How are iron and nickel determined colorimetrically?
 - (c) Write notes on:
 - (i) Common ion effect.
 - (ii) Co-precipitation. (5 + 8 + 7)

UNIT - V

- 9. (a) What is chromatography? How is it classified?
 - (b) Explain the principle and instrumentation of GC.
 - (c) Describe the basic principle and applications of TLC. (5+8+7)

(OR)

- 10. (a) Explain the carrier gas and sample injection in GC.
 - (b) Distinguish between column and partition chromatography.
 - (c) Give a brief account of spray reagents and R_f value. (6+8+6)

http://www.howtoexam.com