4

- 5. (a) Show that every equivalence relation defined on a set decomposes the set into disjoint equivalent classes. (10)
 - (b) Find all the partition of

$$X = \{ a, b, c, d \}.$$
 (10)

- 6. Write an algorithm for multiplying two polynomials P and Q.
- 7. Suppose G is a finite cycle for graph with at least one edge, show that G has at least two vertices of degree 1.
- Show that language L is recognizable by a Turing machine M if L is a type O language.

Register Number :

Name of the Candidate :

7256

B.C.A. DEGREE EXAMINATION, 2007

(FIRST YEAR)

(PART - III)

(PAPER - I)

530. SCIENTIFIC COMPUTING

(New Regulations)

Gyven May]

[Time : 3 Hours

Maximum : 100 Marks

Answer any FIVE questions. All questions carry equal marks. $(5 \times 20 = 100)$

 (a) A manufacturer of furniture makes two products chairs and tables. Processing of these products in done on machines - A and B. A chair requires 2 hours on machine - A and 6 hours on machine - B. A table requires 5 hours on machine - A and no time on machine - B. There are 16 hours of time per day available on

Turn over

2

machine - A and 30 hours of time on machine - B. Profit gained by the manufacturer from the chair and table is Rs. 2 and Rs. 10 respectively. What should be the daily production of each of the two products? (10)

(b) Use simplex method to solve the LPP

maximize $z = 5x_1 + 3x_2$ subject to constraints

$$\begin{aligned} x_1 &+ x_2 &\leq 2 \\ 5x_1 &+ 2x_2 &\leq 10 \\ 3x_1 &+ 8x_2 &\leq 12 \\ x_1, & x_2 &\geq 0. \end{aligned}$$

2. (a) Solve the following LPP by using its dual:

(10)

maximize $z = 2x_1 + x_2$ subject to constraints $x_1 + 2x_2 \le 10$ $x_1 + x_2 \le 6$ $x_1 - x_2 \le 2$ $x_1 - 2x_2 \le 1$, $x_1, x_2 \ge 0$. 3

(b) Solve the following assignment problem :

		F		
А	18	26	17	11
В	13	28	14	26
С	38	19	18	15
D	19	26 28 19 26	24	10

3. Use revised simplex method to solve LPP

Maximize $z = 2x_1 + x_2$

subject to constraints

 $\begin{aligned} &3x_1 + 4x_2 \leq 6 \\ &6x_1 + x_2 \leq 3 \\ &x_1, x_2 \geq 0. \end{aligned}$

4. Find the optimal sequences for processing the jobs on 4 machines whose processing times are given as

	M_1	M_2	M ₃	M_4
J ₁	25	15	14	24
J ₂	22	12	20	22
J ₃	23	13	16	25
J ₄	26	10	13	29

Turn over