5. (a) Show that every equivalence relation defined on a set decomposes the set into disjoint equivalent classes.
(b) Find all the partition of

$$
\begin{equation*}
\mathrm{X}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \tag{10}
\end{equation*}
$$

6. Write an algorithm for multiplying two polynomials P and Q .
7. Suppose G is a finite cycle for graph with at least one edge, show that G has at least two vertices of degree 1 .
8. Show that language L is recognizable by a Turing machine M if L is a type O language.

Name of the Candidate:
7256

B.C.A. DEGREE EXAMINATION, 2007

(FIRST YEAR)
(PART - III)
(PAPER - I)
530. SCIENTIFIC COMPUTING
(New Regulations)
May]
[Time : 3 Hours
Maximum : 100 Marks
Answer any FIVE questions.
All questions carry equal marks.

$$
(5 \times 20=100)
$$

1. (a) A manufacturer of furniture makes two products chairs and tables. Processing of these products in done on machines - A and B. A chair requires 2 hours on machine - A and 6 hours on machine - B. A table requires 5 hours on machine - A and no time on machine - B. There are 16 hours of time per day available on

Turn over

machine - A and 30 hours of time on machine - B. Profit gained by the manufacturer from the chair and table is Rs. 2 and Rs. 10 respectively. What should be the daily production of each of the two products?
(10)
(b) Use simplex method to solve the LPP
$\operatorname{maximize} \mathrm{z}=5 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
subject to constraints

$$
\begin{align*}
\mathrm{x}_{1}+\mathrm{x}_{2} & \leq 2 \\
5 \mathrm{x}_{1}+2 \mathrm{x}_{2} & \leq 10 \\
3 \mathrm{x}_{1}+8 \mathrm{x}_{2} & \leq 12 \\
\mathrm{x}_{1}, \quad \mathrm{x}_{2} & \geq 0 \tag{10}
\end{align*}
$$

2. (a) Solve the following LPP by using its dual : $\operatorname{maximize} \mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2}$ subject to constraints

$$
\begin{aligned}
& \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10 \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6 \\
& \mathrm{x}_{1}-\mathrm{x}_{2} \leq 2 \\
& \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 1 \\
& \mathrm{x}_{1}, \quad \mathrm{x}_{2} \geq 0
\end{aligned}
$$

(b) Solve the following assignment problem :

	E	F	G	H
A	18	26	17	11
B	13	28	14	26
C	38	19	18	15
D	19	26	24	10

3. Use revised simplex method to solve LPP

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2}$ subject to constraints

$$
\begin{aligned}
3 x_{1}+4 x_{2} & \leq 6 \\
6 x_{1}+x_{2} & \leq 3 \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

4. Find the optimal sequences for processing the jobs on 4 machines whose processing times are given as

	M_{1}	M_{2}	M_{3}	M_{4}
$\mathrm{~J}_{1}$	25	15	14	24
$\mathrm{~J}_{2}$	22	12	20	22
$\mathrm{~J}_{3}$	23	13	16	25
$\mathrm{~J}_{4}$	26	10	13	29

