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PART � A (8 × 5 = 40)

Answer any EIGHT questions.

Each questions carries FIVE marks.

1. Let H, K be two subgroups of a group G. Prove

that H K is a subgroup of G if and only if,

H K = K  H.

2. Let G be a group. Let A(G) be the set of all

automorphisms of G. Prove that A(G) is also a

group.
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(b) Let  V be  a  f in i te  d imens ional  inner

product  space .  Prove  tha t  V has  an

orthonormal set as a basis.

14. (a) Prove that  a  polynomial  of  degree  n

over a field can have at most n roots in

any extension field.

(b) If  T, S ∈  A(v) and if S is regular, prove that

T and S T S
�1

  have the same minimal

polynominal.

15. (a) If N is normal and AN = NA, prove that

AN* = N* A,  where  A is  any l inear

transformation on V.

(b) Prove that any two finite fields having the same

number of elements are isomorphic.
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3. Prove that a finite integral domain is a field.

4. Prove that a Euclidean ring possesses a unit

element.

5. If v
1
, v
2
 , .... v

n
 ∈ V are linearly independent,

prove that every victor in their linear span

has a unique representation in the form

λ
1
v
1
 + λ
2
v
2
 + ....... + λ

n
v
n
   with the   λ

n
∈ f.

6. State and prove Schwarz inequality.

7. Let F, K, L be fields. If L is an algebraic

extension of K and if K is an algebraic extension

of F, prove that L is an algebraic extension of F.

8. Let V be a finite dimensional vector space over a

field F. Prove that If   ∈ A(V) is singular if and

only if  here exists a non � zero vector

v in V such that (v)T = 0.

9. I f  ∈A(V) is  Hermit ian ,  prove that  a l l

its characteristic roots are real.

10. If  is unitary and if λ is a characteristic

root of  , prove that  | λ | = 1.

PART � B (3 × 20 = 60)

Answer any THREE questions.

Each questions carries TWENTY marks.

11. (a) Let G,  be groups Let φ be a homomorphism

of G onto  with Kernel K. Prove that  is

isomorphic 
o
  .

(b) If p is a prime number and if p
α

 divides

O(G) ,  prove  tha t  G has  a  subgroup

of order P
α

.

12. (a) Let R be a commutative ring with unit element.

Let M be an ideal of R. Prove that M is a

maximal ideal of R if and only if    is a

field.

(b) If f(x) and g(x) are primitive polynomials,

prove that f(x) g(x) is a primitive polynomial.

13. (a) If V is a finite dimensional vector space over

a field F, prove that any two bases of V have

the same number of elements.
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