(b) Derive Gauss equations of surface theory.
14. (a) Solve the equation

$$
x y^{\prime \prime}-(2 x-1) y^{\prime}+(x-1) y=e^{x}
$$

(b) Find the series solution of the equation.

$$
2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0
$$

15. (a) Define gamma function. Show that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

(b) Obtain Rodrigue's formula which gives an expression for $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$.

Name of the Candidate:
M.Sc. DEGREE EXAMINATION, 2007
(MATHEMATICS)
(FIRST YEAR)
(PAPER - III)

130. DIFFERENTIAL GEOMETRY AND

 DIFFERENTIAL EQUATIONS(Revised Regulations)
May]
[Time : 3 Hours
Maximum : 100 Marks

SECTION - A
 $$
(8 \times 5=40)
$$

Answer any EIGHT questions.
All questions carry equal marks.

1. Define the curvature and torsion of the curve. Find the curvature and torsion of the cubic curve $\vec{r}=\left(u, u^{2}, u^{3}\right)$.
2. If the radius of spherical curvature is constant, prove that the curve either lies on a sphere or has constant curvature.
3. Prove that the curves of the family $\frac{\mathrm{v}^{3}}{\mathrm{u}^{2}}=$ constant are geodesics on a surface with metric

$$
v^{2} d u^{2}-2 u v d u d v+2 u^{2} d v^{2} ;(u>0, v>0) .
$$

4. State and prove the normal property of geodesics.
5. Find the Gaussian curvature of the surface

$$
x=u+v, \quad y=u-v, \quad z=u v .
$$

6. If there is a surface of minimum area passing through closed space curve, show that it is necessarily a minimal surface.
7. Solve the equation $y^{\prime \prime}+4 y=4 \tan 2 x$ using variation of parameters method.
8. Find the general solution of

$$
2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0
$$

9. Locate and classify the singular points of

$$
(3 x+1) x y^{\prime \prime}-(x+1) y^{\prime}+2 y=0
$$

10. Prove the following:
(i) $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x)$
(ii) $\mathrm{J}_{1 / 2}(\mathrm{x})=\sqrt{\frac{2}{\pi \mathrm{x}}} \sin \mathrm{x}$.

$$
\text { SECTION - B } \quad(3 \times 20=60)
$$

Answer any THREE questions.
All questions carry equal marks.
11. (a) Find the arc length of the curve given as the intersection of the surfaces

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, x=a \cosh \left(\frac{z}{a}\right)
$$

(b) State and prove the fundamental existence theorem for space curves.
12. (a) Obtain Liouville's formula for K_{g}.
(b) State and prove Tissot's theorem.
13. (a) Prove that a necessary and sufficient condition for a surface to be a developable is that its Gaussian curvature is zero.

