(b) Prove that:

$$
\begin{gathered}
\frac{d}{d x}\left[x^{p_{J}}(x)\right]=x^{p} J_{p-1}(x) \\
\text { and } \frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x-p J_{p+1}(x) .
\end{gathered}
$$

13. (a) Show that the equation:

$$
\begin{aligned}
x_{p}-y_{q} & =x \\
\text { and } \quad x^{2} p+q & =x z
\end{aligned}
$$

are compatible and find their solution.
(b) Using Jacobi's method, find complete integral of the equation $p^{2} x+q^{2} y=z$.
14. (a) Find the solution of the equation

$$
\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}-\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{y}^{2}}=\mathrm{x}-\mathrm{y}
$$

(b) Obtain the solution, valid when $x, y>0, x y>1$ of the equation

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{1}{x+y} \text { such that }
$$

Register Number
Name of the Candidate:

7691

M.Sc. DEGREE EXAMINATION, 2007

(MATHEMATICS)
(FIRST YEAR)
(PAPER - IV)
540. DIFFERENTIAL EQUATIONS WITH APPLICATIONS
(New Regulations)
May]
[Time: 3 Hours
Maximum : 100 Marks

$$
\text { PART }-\mathbf{A} \quad(8 \times 5=40)
$$

Answer any EIGHT questions.
All questions carry equal marks.

1. Show that $y=C_{1} e^{2 x}+C_{2} x^{2 x}$ is the general solution of $y^{\prime \prime}-4 y^{\prime}+4 y=0$ on any interval. Find also the particular solution for which $y(0)=2$ and $y^{\prime}(0)=2$.
2. Find the general solution of $y^{\prime \prime}+x y^{\prime}+y=0$ in terms of power series in x.
3. Prove that:
and

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{~J}_{\mathrm{o}}(\mathrm{x})\right)=-\mathrm{J}_{1}(\mathrm{x}) \\
& \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{xJ}_{1}(\mathrm{x})\right)=\mathrm{xJ}_{0}(\mathrm{x})
\end{aligned}
$$

4. Using Gamma function, prove that :

$$
(n+1 / 2)!=\frac{(2 n+1)!}{2^{2 n+1} \cdot n!} \sqrt{\pi}
$$

5. Find the general integrals of the partial differential equation $Z(x p-y q)=y^{2}-x^{2}$.
6. Find the equation of the system of surfaces which cut orthogonally the cones of the system

$$
x^{2}+y^{2}+z^{2}=c x y .
$$

7. If $\mathrm{u}=\mathrm{f}(\mathrm{x}+\mathrm{iy})+\mathrm{g}(\mathrm{x}-\mathrm{iy})$ where f and g are arbitrary, show that

$$
\frac{\delta^{2} u}{\delta x^{2}}+\frac{\delta^{2} u}{\delta y^{2}}=0
$$

8. Find particular integral of $\left(D^{2}-D^{\prime}\right) Z=2 y-x^{2}$.
9. A gas is contained in a regid sphere of radius a. Show that if C is the velocity of sound in the gas, the frequencies of purely radical oscillations are

$$
\frac{\mathrm{c}_{\mathrm{i}}}{\mathrm{a}} \text { when } \mathrm{z}_{1}, \mathrm{z}_{2} \ldots \ldots
$$

are positive roots of the equation $\tan \mathrm{z}=\mathrm{z}$.
10. Derive the D'Ahembert's solution of the one dimensional wave equation.

$$
\text { PART }-\mathbf{B} \quad(3 \times 20=60)
$$

Answer any THREE questions.
Each question carries equal marks.
11. (a) Find the particular solution of $y^{\prime \prime}+y=\sec x$.
(b) For the differential equation

$$
2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0
$$

locate and classify its singular points in x axis.
12. (a) Find the general solution of the differential equation

$$
x(1-x) y^{\prime \prime}+\left(\frac{3}{2}-2 x\right) y^{\prime}+2 y=0
$$

near the singular point $x=0$.

$$
\mathrm{z}=0, \mathrm{p}=\frac{2 \mathrm{y}}{\mathrm{x}+\mathrm{y}}
$$

on the hyperbola $x y=1$.
15. If the string is released from rest in the position $y=f(x)$, show that the total energy of the string is

$$
\frac{\pi^{2} \mathrm{~T}}{4 l} \Sigma \mathrm{~s}^{2} \mathrm{k}_{\mathrm{s}}{ }^{2}
$$

where

$$
\mathrm{k}_{\mathrm{s}}=\frac{2}{l} \int_{0}^{1} \mathrm{f}(\mathrm{x}) \sin \left(\frac{\mathrm{s} \pi \mathrm{x}}{l}\right) \mathrm{dx}
$$

The mid-point of the string is pulled aside through a small distance and then released. Show that in the subsequent motion the fundamental mode contributes $\frac{8}{\pi^{2}}$ of the total energy.

$$
\mathrm{z}=0, \mathrm{p}=\frac{2 \mathrm{y}}{\mathrm{x}+\mathrm{y}}
$$

$$
\text { on the hyperbola } x y=1 .
$$

15. If the string is released from rest in the position $y=f(x)$, show that the total energy of the string is

$$
\frac{\pi^{2} \mathrm{~T}}{4 l} \Sigma \mathrm{~s}^{2} \mathrm{k}_{\mathrm{s}}^{2}
$$

where

$$
\mathrm{k}_{\mathrm{s}}=\frac{2}{l} \int_{0}^{1} \mathrm{f}(\mathrm{x}) \sin \left(\frac{\mathrm{s} \pi \mathrm{x}}{l}\right) \mathrm{dx}
$$

The mid-point of the string is pulled aside through a small distance and then released. Show that in the subsequent motion the fundamental mode contributes $\frac{8}{\pi^{2}}$ of the total energy.

