B.E. (ME) Part-IV 8th Semester Examination, 2006

Circulating Fluidized Bed Technology

(Elective-II) (ME-804/10)
Time : 3 hours
Full Marks : 100

Use separate answerscript for each half.

The questions are of equal value.

FIRST HALF

(Answer either O.No.l or Q.No. 2 and also answer Q.No. 3 and 4.)

1. a) Define fast fluidized bed in the context of its use in a CFB boiler.
b) Describe, with a neat sketch, the up and down movement of solid agglomerates in a very dilute dispersion of solids in a fast fluidized bed.
c) Show schematically the transition from pneumatic transport to fast fluidization.
d) Show a schematic repres<mtationjrf $\wedge \wedge \wedge$ a vertical column. What are choking and captive state?
2. a) Show, with a diagram, that the fast fluidization is bounded by two velocities which depend on the circulation rate.
b) What is transport velocity? Consider the time of emptying a column and show the transport velocity with the help of a diagram.
c) Show with a neat diagram the transition from one regime to another depending on operating and design parameters.
3. Find the minimum velocity for fast fluidization for $300 \mid \mathrm{im}$ sand particles at $27^{\circ} \mathrm{C}$ and $825^{\circ} \mathrm{C}$ for the following conditions. The desired solid circulation rate in the fast regime is $30 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$. The cross-section of the bed is 0.203 mx 0.203 m . The density of the particles is $2500 \mathrm{~kg} / \mathrm{m}^{3}$.

	Set I	Set II
Temperature	$825^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$
Gas density	$0.316 \mathrm{~kg} / \mathrm{m}^{3}$	$1.16 \mathrm{~kg} / \mathrm{m}^{3}$
Gas viscosity	$4.49 \times 10^{\prime \prime 5} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$	$1.84 \times 10^{\prime \prime 5} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$

4. Estimate the bed inventory in a CFB furnace operating at $825^{\circ} \mathrm{C}$ and the bed voidage at 4 m above a fast bed that is 20 m tall. Also find the voidage at the wall at this height using the empirical equation :
$e(r)=e_{\text {av }}\left[{ }^{3}-{ }^{62}\right.$ TM $\left.^{6,47+0}{ }^{-191}\right], \quad 1>r / R>0.75$ Given that
$P_{p}=2500 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{U}=8 \mathrm{~m} / \mathrm{s}, \mathrm{d}_{\mathrm{p}}=300 \mathrm{urn}$.
The secondary air is injected at the level of 3 m . The bed cross-section is 2.5 mx 10 m below and 5 mx 10 m above this level.

Assume $\mathrm{e}_{\mathrm{a}}=0.85=$ asymptotic voidage, $\mathrm{a}=$ decay constant $=1.0 \mathrm{~m} \sim$.

SECOND HALF

(Answer Q.No. 5 and 6 and any ONE from Q.No. 7 and 8.)

5. Find the convective heat flux on a plane wall of a CFB furnace operating at $6 \mathrm{~m} / \mathrm{s}$ and $860^{\circ} \mathrm{C}$ with 200 um sand. The wall temperature is $360^{\circ} \mathrm{C}$. Use the cluster renewal model. Given :
$\mathrm{k}_{\mathrm{g}} \quad 74 \mathrm{xlO} \sim \sim^{6} \mathrm{~kW} / \mathrm{m} . \mathrm{K}$

$$
\mathrm{k}_{\mathrm{p}} \quad 1.81 \mathrm{xlO} \sim \sim^{3} \mathrm{~kW} / \mathrm{m} . \mathrm{K}
$$

$$
\overline{\mathrm{k}}_{\mathrm{gf}}=64 \times 1 O \sim^{6} \mathrm{~kW} / \mathrm{m} . \mathrm{K}
$$

$$
\mathbf{c}_{\mathbf{D}}=0.85 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\mathrm{u}_{\mathrm{g}}=48 \times 1 \mathrm{O} \sim \sim^{6} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}
$$

$\mathbf{u}_{\mathbf{t}}$
: $1.648 \mathrm{~m} / \mathrm{s}$
6. Refer to the question No. 5 and using the same data, calculate the radiative heat flux and overall heat flux on the wall.
7. a) Explain with a diagram the sequence of events during combustion of a coal particle.
b) Show diagramatically the sequence of volatile release during different stages of devolatilization.
8. a) Discuss the communication phenomenon during coal combustion.
b) Give a global view of the combustion process in the different zones of a CFB boiler furnace.

$$
\begin{aligned}
& \mathrm{Pb}=18 \mathrm{~kg} / \mathrm{m}^{3} \quad \mathrm{e}_{\mathrm{s}}=0.88 \\
& \mathrm{P}_{\mathrm{p}}-2500 \mathrm{~kg} / \mathrm{m}^{3} \\
& { }^{\mathrm{e}} \mathrm{~g}=0.112 \\
& \mathrm{P}_{\mathrm{g}}=0.321 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{e}_{\mathrm{n}}=0.86 \\
& \mathrm{~A}=4 \mathrm{~m} \times 2 \mathrm{~m} \\
& \text { P }=0.62 \\
& \mathrm{~T}_{\mathrm{b}}=860^{\circ} \mathrm{C} \\
& =0.9946 \\
& \mathrm{~T}_{\mathrm{s}}=360^{\circ} \mathrm{C} \\
& \mathrm{P}_{\mathrm{r}}=0.731 \\
& \mathrm{~L}=10 \mathrm{~m}
\end{aligned}
$$

