B.E. (CST) Part-II 3rd Semester Examination, 2007

Elements of Mechanical Engineering (ME-304)

Time: 2 hours

Full Marks: 35

Use separate answerscript for each half.

Answer FOUR questions, taking TWO from each half.

The questions are of equal value.

FIRST HALF

- a) Explain the working of a reciprocating air-compressor (single-stage) along with a suitable diagram.
 - b) Derive the expression for the work done per kg. of air delivered by a reciprocating air-compressor. The clearance volume can not be neglected.
- a) Draw a Diesel cycle on p-v diagram and state its various thermodynamic processes.
 - b) An engine working on Diesel cycle has compression ratio of 16. The pressure and temperature at the beginning of the cycle are 1 bar and 292 K. The heat supplied to the working fluid per cycle is 2000 kJ/kg. Determine (i) the thermal efficiency and (ii) the mean effective pressure of the cycle.
 Take γ = 1.4 and C_p = 1.005 kJ/kg-K for air to be the working fluid.
- a) Starting from first principles derive the expression of thermal efficiency for Otto cycle.
 - b) Show that for the maximum work to be done per kg. of air in Otto cycle between given upper and lower limits of absolute temperature T_3 and T_1 respectively, the ratio of compression should have the value $\left(\frac{T_3}{T_1}\right)^{1.25}$ when $\gamma = 1.4$.

SECOND HALF

- 4. a) Define a kinematic pair. With the help of a diagram, identify different kinematic pairs in a slider-crank mechanism.
 - b) Derive the expression for velocity and acceleration of a slider of the slider crank mechanism.

c)

- c) A petrol engine has a stroke of 140 mm and the connecting rod is 5 times the crank length. The crank rotates at 1000 rpm in the clockwise direction. Determine the velocity and acceleration of the piston at a crank angle of 35°. What is the inertia force due to the piston of mass of 25 kg?
- 5. a) Explain the following terms of a governor mechanism.
 - i) Sensitiveness, ii) isochronous.

Explain the function of a flywheel.

- b) Explain briefly the stability of a governor mechanism.
- d) Establish the following equation for a flywheel having a mass moment of inertia, I

$$\Delta E = I\omega_0^2 C_s$$

Where, ω_0 = mean angular velocity, C_s = coefficient of fluctuation of speed.

- 6. a) Define free and forced vibrations.
 - b) What are the basic elements in a vibratory system? How does a vibratory system maintain the energy balance?
 - c) Establish the equation of motion of an undamped free vibration of a single spring-mass system using the energy method.
 - d) Justify that the natural frequency of the above system is a system constant.