B.E. (EE) Part-Ill 6th Semester Examination, 2006 Numerical Methods and Computer Programming (EE-605)

Time : $\mathbf{3}$ hours
Full Marks : 100

Use separate answerscript for each half.

Answer SIX questions, taking THREE from each half.
Two marks are reserved for neatness in each half.

FIRST HALF

1. a) Apply Newton-Raphson method to find one positive root greater than 1.0 of

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=3 \mathrm{x}+\sin \mathrm{x}-\mathrm{e}^{\mathrm{x}}=0 \\
& \text { Take }|\mathrm{f}(\mathrm{x})|<0.0001
\end{aligned}
$$

b) Discuss the convergence characteristics of Newton-Raphson method.
[10+6]
2. a) Develop an algorithm for synthetic division of a polynomial,
b) Determine the second remainder of
by synthetic division. Verify it with remainder theorem.
3. a) What do you mean by direct method and iterative method of solution of a set of linear algebraic equations.
b) Find the inverse of the following coefficient matrix using Gauss-Jordan method and solve the equations. Show the intermediate steps.

$$
\left|\begin{array}{rrr}
1 & 2 & -3 \\
1 & 3 & 1 \\
2 & -4 & -2
\end{array}\right| \xrightarrow{\mathbf{r x x} \leadsto \mathbf{i}-}\left|\begin{array}{r}
-4 \\
10 \\
-12
\end{array}\right|
$$

$$
[4+(8+4) \mathrm{J}
$$

4. a) What are interpolation and least squares methods?
b) Fit a second-order polynomial to the following data using least squares method.

	2.1	7.7	13.6	27.2	40.9
$\mathbf{x} ;$	0	1			

5. a) Derive the formula for integral of a function using trapezoidal rule.
b) Evaluate the integral of the function with the following tabulated data over the interval from $\mathrm{x}=1.8$ to $\mathrm{x}=3.0$.

\mathbf{X}	1.8	2.0	2.2	2.4	2.6	2.8	3.0
$\mathbf{f (\mathbf { x })}$	6.050	7.389	9.025	11.023	13.464	16.445	20.086

(EE-605)

SECOND HALF

6. a) What are the outputs of following two programs? Give justification of each answer.
i) int main () $\{$ int $\mathrm{x}, \mathrm{y} ; \mathrm{x}=12 ; \mathrm{y}=0 ; \mathrm{x}++;++\mathrm{x} ; \mathrm{x}=-1 ; \mathrm{y} \%=(\mathrm{x}-1)$; printf("\%f\n", y); return 0; \}
ii) int main() \{ unsigned int $\mathrm{p}=-30$; if($\mathrm{p}>0$) printf("Positive"); else printf("Negative"); return 0; \}
b) Develop a prime function to check whether a number is prime or not. Then discuss how that C code can be used to create a header and library. $\quad[4+4+8]$
7. a) Write a function to exchange the values of two variables. Discuss the program in brief.
b) Write a C program to compute $\mathrm{c}=\mathrm{a}+\mathrm{b}^{*} \mathrm{~d}^{2}+\mathrm{k}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are complex numbers and k is a constant number.
8. a) Write a short note on the salient features of UNIX/LINUX operating system.
b) Discuss about the file system permission and security mechanism in UNIX/ LINUX environment.
9. a) How > is different from » operator in case of UNIX shell?
b) Discuss about pipe and filter of UNIX/LINUX operating system with appropriate examples.
c) How can you run a program as a background process? Then show, how to monitor the execution and terminate the program in case of emergency?
10. Write short notes on $\mathrm{a}, \mathrm{b}, \mathrm{c}$ below :
a) UNIX/LINUX is a case sensitive silent operating system
b) Functions in C
c) chmod command in UNIX/LINUX
d) Fill up the blanks
i) $a r$ is an \qquad .
ii) kill is used to \qquad .
iii) A valid c variable name must be started with
iv) chown is used to \qquad .
