B.E. (EE) Part-III 5th Semester Examination, 2007

Measurement - II (EE-506)

Time: 3 hours Full Marks: 100

Use separate answerscript for each half.

Answer SIX questions, taking THREE from each half.

Two marks are reserved for neatness in each half.

FIRST HALF

- 1. a) Explain the following with suitable examples:
 - i) Gross errors
 - ii) Systematic errors
 - iii) Standard deviation
 - b) The underdamped galvanometer was energized 100 times under the same carefully controlled experimental conditions and the maximum deflection was read in each case. The readings were normally distributed about a mean value of 26.3 mm and had a probable error of 2.5 mm. How many of 100 readings would you estimate exceeded 30 mm? [(3×3)+7]
- a) Describe the constructional details and working of a single phase electrodynamometer type of power factor meter. Prove that the special displacement of moving system is equal to the phase angle of the system.
 - b) In a deflectional frequency meter working on the principle of electrical resonance, there are two parallel circuits each consisting of an inductance and a capacitance in series. One circuit has $C_1 = 1\mu F$ and is tuned to a frequency, $f_1 = 60\,\text{Hz}$. The other has $C_2 = 1.5\,\mu F$ and is tuned to a frequency f_2 , below 50 Hz. The resistance of each circuit is $R_1 = R_2 = 100$ ohm. What must be the inductance of the second circuit, and to what frequency must it be tuned, in order that the current in both the circuits shall be same at a frequency of 50 Hz.
- a) Describe the construction and working of a Merz Price Maximum Demand Indicator.

- Supposing the following readings are obtained for one month of 30 days, find out the average monthly load factor and power factor.
 kVarh (reactive) meter advance = 83830, kWh meter indicator = 1400, Demand indicator = 1400 kW.
- 4. a) Explain the instrinsic constants of a ballistic galvanometer and write down the equation for motion of a galvanometer. Explain the response of the galvanometer under (i) undamped conditions, (ii) underdamped conditions, (iii) critically damped conditions and (iv) overdamped conditions. Draw the response curves.
 - b) A manufacturer lists grain oriented steel sheet 0.3 mm thick. The resistivity of material is 50×10^{-8} ohm.m. The hysteresis loop is essentially rectangular in form, with a coercive force of 12 A/m at 100 Hz is used. The density of material is $7650 \,\text{kg/m}^3$. Find the total loss/kg. (10+6)
- a) Explain the construction and working of an average reading VTVM. Describe
 its advantages and disadvantages. Explain how this meter can be converted
 to a rms reading voltmeter.
 - b) Explain the functioning of a basic type of strip chart recorder. Explain the different types of marking mechanisms used in it. (8+8)

SECOND HALF

- a) Explain the method of construction of hysteresis loop by the method of reversals using Ballistic Galvanometer.
 - b) Write a brief notes on types of errors and. (8+8)
- 7. a) Write a brief note on fluorescence material used in CRO.
 - b) Derive the expression for determining the phase angle difference of two signal using CRO.
 - c) Draw the lissajous patterns for the following conditions.
 - i) Both signals have same frequency with 78-degree phase difference.
 - ii) Frequency ratio is 5/3 (4+8+4)
- 8. a) "DC potentiometer cannot be used to measure an AC quantity straight way"—justify the statement and describe a method for measuring AC potential.
 - b) Explain "standardization" of potentiometer with suitable diagram. (10+6)

(EE-506)

- 9. a) Show that for AC bridges, the ratio of R1-R2, R3-R4 and L1-L2 are equal with suitable diagram, Where Rn and Ln are as per convention.
 - b) For a Maxwell's bridge, R3 and R4 are non-reactive resistors of 100 ohm each. Z1 is standard variable inductor L of resistance 32.7 ohm and Z2 comprises a standard variable resistor R in series with a coil of unknown impedance. Balance is obtained when L = 47.8 mH and R = 1.36 ohm. Derive the full expression of Maxwell's bridge and find the resistance and reactance of the coil. (6+10)
- 10. Write short notes:

 (4×4)

- a) Measurement of B-H loops using CRO
- b) Synchroscope
- c) Grossot flux meter
- d) Measurement of iron-loss by self inductance method.